Search results for "Bayesian [statistical analysis]"
showing 10 items of 299 documents
Un approccio bayesiano per lo studio dell’associazione gene-ambiente in assenza di equilibrio di Hardy-Weinberg in un contesto multivariabile: studio…
2009
A Spatio-temporal Probabilistic Model of Hazard and Crowd Dynamics in Disasters for Evacuation Planning
2013
Published version of a chapter in the book: Recent Trends in Applied Artificial Intelligence. Also available from the publisher at: http://dx.doi.org/10.1007/978-3-642-38577-3_7 Managing the uncertainties that arise in disasters – such as ship fire – can be extremely challenging. Previous work has typically focused either on modeling crowd behavior or hazard dynamics, targeting fully known environments. However, when a disaster strikes, uncertainty about the nature, extent and further development of the hazard is the rule rather than the exception. Additionally, crowd and hazard dynamics are both intertwined and uncertain, making evacuation planning extremely difficult. To address this chal…
Modelling the presence of disease under spatial misalignment using Bayesian latent Gaussian models.
2015
Modelling patterns of the spatial incidence of diseases using local environmental factors has been a growing problem in the last few years. Geostatistical models have become popular lately because they allow estimating and predicting the underlying disease risk and relating it with possible risk factors. Our approach to these models is based on the fact that the presence/absence of a disease can be expressed with a hierarchical Bayesian spatial model that incorporates the information provided by the geographical and environmental characteristics of the region of interest. Nevertheless, our main interest here is to tackle the misalignment problem arising when information about possible covar…
Social Support and Resilience as Predictors of Prosocial Behaviors before and during COVID-19
2022
The objective of this research was to analyze the relationship between social support and resilience with prosocial behavior before and during the confinement caused by COVID-19. Materials and Methods: The participants were divided into a confined group (228 women and 84 men) and an unconfined group (153 women and 105 men), all of whom were university students. Instruments were applied to measure the variables proposed. Results: Social support predicted 24.4% of the variance in prosocial behavior among women and 12% among men in the confined group; no evidence of this relationship was found in the unconfined groups. Resilience predicted 7% of the variance in prosocial behavior among confine…
Bayesian approach for uncertainty quantification in water quality modelling: The influence of prior distribution
2010
Summary Mathematical models are of common use in urban drainage, and they are increasingly being applied to support decisions about design and alternative management strategies. In this context, uncertainty analysis is of undoubted necessity in urban drainage modelling. However, despite the crucial role played by uncertainty quantification, several methodological aspects need to be clarified and deserve further investigation, especially in water quality modelling. One of them is related to the “a priori” hypotheses involved in the uncertainty analysis. Such hypotheses are usually condensed in “a priori” distributions assessing the most likely values for model parameters. This paper explores…
Using Bayesian networks to describe hydrologic processes
2014
Masteroppgave i Informasjons- og kommunikasjonsteknologi IKT590 Universitetet i Agder 2014 The goal for this Masters thesis is to explore the use of dynamic Bayesian networks for describinghydrologic processes. The main intent is to try and provide better descriptions of the uncertainties thatare tied to dealing with such complex and partially unknown processes, while also trying to reducethese uncertainties. For this purpose I have translated part of a well known and widely useddeterministic model, the snow module of the HBV model, into a dynamic Bayesian network.
An interpolation-based data fusion scheme for enhancing the resolution of thermal image sequences
2014
In several human activities, such as agriculture and forest management, the monitoring of radiometric surface temperature is key. In particular both high spatial resolution and high acquisition rate are desirable but, due to the hardware limitations, these two characteristics are not met by the same sensor. The fusion of remotely sensed data acquired by sensors with different spatial and temporal resolution is a profitable choice to face this issue. When the real-time requirement is relaxed, the data sequence can be processed as a whole, allowing to improve the final result. Within this framework, we propose a novel batch sharpening strategy, relying on interpolation, data fusion and Bayesi…
Modelling the General Public's Inflation Expectations Using the Michigan Survey Data
2009
In this article we discuss a few models developed to explain the general public's inflation expectations formation and provide some relevant estimation results. Furthermore, we suggest a simple Bayesian learning model which could explain the expectations formation process on the individual level. When the model is aggregated to the population level it could explain not only the mean values, but also the variance of the public's inflation expectations. The estimation results of the mean and variance equations seem to be consistent with the results of the questionnaire studies in which the respondents were asked to report their thoughts and opinions about inflation.
A Naïve Sticky Information Model of Households’ Inflation Expectations
2009
This paper provides a simple epidemiology model where households, when forming their inflation expectations, rationally adopt the past release of inflation with certain probability rather than the forward-looking newspaper forecast as suggested in Carroll [2003, Macroeconomic Expectations of Households and Professional Forecasters, Quarterly Journal of Economics, 118, 269-298]. The posterior model probabilities based on the Michigan survey data strongly support the proposed model. We also extend the agent-based epidemiology model by deriving for it a simple adaptation, which is suitable for estimation. Our results show that this model is able to capture the heterogeneity in households’ expe…
A Framework for Assessing the Condition of Crowds Exposed to a Fire Hazard Using a Probabilistic Model
2014
Published version of an article in the journal: International Journal of Machine Learning and Computing. Also available from the publisher at: http://dx.doi.org/10.7763/IJMLC.2014.V4.379 open Access Allocating limited resources in an optimal manner when rescuing victims from a hazard is a complex and error prone task, because the involved hazards are typically evolving over time; stagnating, building up or diminishing. Typical error sources are: miscalculation of resource availability and the victims’ condition. Thus, there is a need for decision support when it comes to rapidly predicting where the human fatalities are likely to occur to ensure timely rescue. This paper proposes a probabil…